
Tools for Reproducible Research
Organizing projects; exploratory data analysis

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

I’m trying to cover two things here: how to organize data analysis
projects, so in the end the results will be reproducible and clear, and
how to capture the results of exploratory data analysis.

The hardest part, regarding organizing projects, concerns how to
coordinate collaborative projects: to keep data, code, and results
synchronized among collaborators.

Regarding exploratory data analysis, we want to capture the whole
process: what you’re trying to do, what you’re thinking about, what
you’re seeing, and what you’re concluding and why. And we want to
do so without getting in the way of the creative process.

I’ll sketch what I try to do, and the difficulties I’ve had. But I don’t
have all of the answers.



File organization and naming
are powerful weapons against chaos.

– Jenny Bryan

2

You don’t need to be organized, but it sure will help others (or
yourself, later), when you try to figure out what it was that you did.

Segregate all the materials for a project in one directory/folder on
your harddrive.

I prefer to separate raw data from processed data, and I put code in a
separate directory.

Write ReadMe files to explain what’s what.



Organizing your stuff
Code/d3examples/

/Others/
/PyBroman/
/Rbroman/
/Rqtl/
/Rqtlcharts/

Docs/Talks/
/Meetings/
/Others/
/Papers/
/Resume/
/Reviews/
/Travel/

Play/
Projects/AlanAttie/

/BruceTempel/
/Hassold_QTL/
/Hassold_Age/
/Payseur_Gough/
/PhyloQTL/
/Tar/

3

This is basically how I organize my hard drive. You want it to be
clear where things are. You shouldn’t be searching for stuff.

In my Projects/ directory, I have a Tar/ directory with tar.gz files
of older projects; the same is true for other directories, like
Docs/Papers/ and Docs/Talks/.



Organizing your projects
Projects/Hassold_QTL/

Data/
Notes/
R/
R/Figs/
R/Cache/
Rawdata/
Refs/

Makefile
Readme.txt

Python/convertGeno.py
Python/convertPheno.py
Python/combineData.py

R/prepData.R
R/analysis.R
R/diagnostics.Rmd
R/qtl_analysis.Rmd

4

This is how I’d organize a simple project.

Separate the raw data from processed data.

Separate code from data.

Include a Readme file and a Makefile.

I tend to reuse file names. Almost every project will have an
R/prepData.R script.

Of course, each project is under version control (with git)!

R/analysis.R usually has exploratory analyses, and then there’ll be
separate .Rmd files with more finalized work.



Organizing a paper
Docs/Papers/PhyloQTL/

Analysis/
Data/
Figs/
Notes/
R/
SuppFigs/

ReadMe.txt
Makefile
phyloqtl.tex
phyloqtl.bib

Submitted/
Reviews/
Revised/
Final/
Proofs/

5

This is how I organize the material for a paper.

R/ contains code for figures; Analysis/ contains other analysis code;
Data/ contains data; Figs/ contains the figures; Notes/ contains
notes or references.

Of course, a Makefile for compiling the PDF, and perhaps a ReadMe
file to explain where things are.

And I’ll save the submitted version (and text files with bits for web
forms at submission), plus reviews, the revised version plus response
to reviews, and then the final submitted version and the proofs.



Organizing a talk
Docs/Talks/SampleMixups/

Figs/
R/

ReadMe.txt
Makefile
bmi2013.tex

Old/

6

This is how I organize the material for a talk: much like a paper, but
generally a bit simpler.

Again, R/ contains code for figures and Figs/ contains the actual
figures.

And again, a Makefile for compiling the PDF, and perhaps a ReadMe
file to explain where things are.

And I’ll save all old versions in Old/



Basic principles

▶ Develop your own system
▶ Put everything in a common directory
▶ Be consistent

– directory structure; names

▶ Separate raw from processed data
▶ Separate code from data
▶ It should be obvious what code created what files,

and what the dependencies are.
▶ No hand-editing of data files
▶ Don’t use spaces in file names
▶ Use relative paths, not absolute paths

../blah not ~/blah or /users/blah

7

I work on many different projects at the same time, and I’ll come
back to a project 6 months or a year later.

I don’t want to spend much time figuring out where things are and
how things were created: have a Makefile, and keep notes. But notes
are not necessarily correct while a Makefile would be.

Plan for the whole deal to ultimately be open to others: will you be
proud of the work, or embarrassed by the mess?



Your closest collaborator is you six months ago,
but you don’t reply to emails.

8

I heard this from Paul Wilson, UW-Madison.

The original source is a tweet by Karen Cranston, quoting Mark
Holder.

https://twitter.com/kcranstn/status/370914072511791104



Organization takes time.

9

There’s no getting around the fact that doing things properly takes
longer, in the short term.

If you have a good system and good habits, it won’t seem like it takes
so long.

But definitely, it’s a large up-front investment in order to potentially
save a lot of time and aggravation later.



Painful bits

▶ Coming up with good names for things
– Code as verbs; data as nouns

▶ Stages of data cleaning
▶ Going back and redoing stuff
▶ Clutter of old stuff that you no longer need
▶ Keeping track of the order of things

– dependencies; what gave rise to what

▶ Long, messy Makefiles

→ Modularity

10

I don’t have many solutions to these problems. Version control helps.
And try to break things down into different stages, in case one aspect
needs to be revised. Maybe use different subdirectories for the
different stages of data cleaning.

A point that was raised in the discussion: Have periodic “versions” for
a project, perhaps labeled by date. Move all the good stuff over and
retire the stuff that is no longer useful or necessary.



xkcd.com/1179
11

Go with the xkcd format for writing dates, for ease of sorting.



Problem: Variations across data files

▶ Different files (or parts of files!) may have different
formats.

▶ Variables (or factor levels) may have different names
in different files.

▶ The names of files may inconsistent.

▶ It’s tempting to hand-edit the files. Don’t!
▶ Create another meta-data file that explains what’s

what.

12

Scientists aren’t trained in how to organize data.

Multiple people in a lab might have his/her own system, or an
individual’s system may change over time (or from the top to the
bottom of a file!)

Create a separate file with meta-data: “These are the files. In this
file, the variable is called blah while in that file it’s blather.”

The meta-data file should be structured as data (e.g., as a comma- or
tab-delimited file) for easy parsing.



Tidy data

Read Hadley Wickham’s paper on Tidy Data.

▶ Each variable forms a column.
▶ Each observation forms a row.
▶ Each type of observational unit forms a table.

Mouse Treatment Response
1 control –
1 ttt 7.4
2 control 3.8
2 ttt 5.2
3 control 5.5
3 ttt 6.6

13

Read the paper!

When you convert data into a better form, convert it into the tidy
form.

Also, consider Hadley’s tools, like dplyr



Problem: 80 million side projects

$ ls ~/Projects/Attie

AimeeNullSims/ Deuterium/ Ping/
AimeeResults/ ExtractData4Gary/ Ping2/
AnnotationFiles/ ForFirstPaper/ Ping3/
Brian/ FromAimee/ Ping4/
Chr10adipose/ GoldStandard/ Play/
Chr6_extrageno/ HumanGWAS/ Proteomics/
Chr6hotspot/ Insulin/ R/
ChrisPlaisier/ Islet_2011 -05/ RBM_PlasmaUrine/
Code4Aimee/ Lusis/ R_adipose/
CompAnnot/ MappingProbes/ R_islet/
CondScans/ Microarrays/ Rawdata/
D2O_2012 -02-14/ MultiProbes/ Scans/
D2O_Nrm_2012 -02-29/ NewMap/ SimsRePower/
D2O_cellcycle/ Notes/ Slco1a6/
D2Ocorr/ NullSims/ StudyLineupMethods/
Data4Aimee/ NullSims_2009 -09-10/ eQTLPaper/
Data4Tram/ PepIns_2012 -02-09/ transeQTL4Lude/

14

This is a project-gone-wrong.

A key problem in research is that you don’t really know what you’re
doing when you get started. It seems best to separate out each
side-project as a separate directory, but it can be a nightmare to find
things later.

If each of these subdirectories was nicely organized and had a ReadMe
file, you could grep your way through them.

I sort of like the idea of separate directories for the different aspects of
mucking about. And second versions are always better. Maybe we
should plan to muck about separately and then bring a more refined
analysis back into a common directory?

A point raised in the discussion: Put defunct side projects into an
Old/ subdirectory, and put active but not yet clearly interesting ones
into New/ or Play/. This will help to avoid the clutter.



Saving intermediate results

R Markdown document with details of data cleaning.
▶ Within the .Rmd file, periodically save the state of

things, for further exploratory analysis.
▶ Put those intermediate files (which might be large) in

a common subdirectory.
▶ The subdirectory could be under separate version

control.
▶ But you’ll need to go in there and commit files.

15

I want a reproducible analysis document, but I want to be able to
grab objects from the middle of the process for further exploration.
So I’ll include code chunks to save the state of things, say in a Cache
or RData subdirectory.

Subdirectories can be their own git repositories: Include that
subdirectory in the .gitignore file, and then use git init within
the subdirectory.

A point raised in the discussion: how to synchronize a project
between computers? If we don’t put the intermediate files in the main
repository, we can’t rely on GitHub. (For a simple manuscript or talk,
it’s okay to reconstruct things on another computer, but for big
analyses, you wouldn’t want to.) I use ChronoSync to synchronize my
Mac desktop and laptop. Maybe Dropbox or Google Drive would be
useful for this. You’d still want to use git and and GitHub, but you
could supplement them by having the repository sit in your Dropbox
folder.



Problem: Coordinating with collaborators

▶ Where to put data that multiple people will work with?
▶ Where to put intermediate/processed data?
▶ Where to indicate the code that created those

processed data files?
▶ How to divvy up tasks and know who did what?

▶ Need to agree on directory structure and file naming
conventions

▶ Consider symbolic links for shared data directories
ln -s /z/Proj/blah
ln -s /z/Proj/blah my_blah

16

Ideally, everything synchronized with git/GitHub.

The keys: planning and regular communication

Symbolic links are also called “soft links.” It’s just like a file shortcut
in Windows.



Problem: Collaborators who don’t use git

▶ Use git yourself
▶ Copy files to/from some shared space

– Ideally, in an automated way

▶ Commit their changes.

17

Life would be easier if all of our analysis collaborators adopted git.
Teach them how?!

When I’m working with a collaborator on a paper, I may get
comments from them as a marked-up PDF. I’ll save that in the
repository and will incorporate and commit the changes in the source
files, on my own.



Exploratory data analysis

▶ what were you trying to do?
▶ what you’re thinking about?
▶ what did you observe?
▶ what did you conclude, and why?

18

We want to be able to capture the full outcome of exploratory data
analysis.

But we don’t want to inhibit the creative flow. How to capture this
stuff?



Avoid

▶ ”How did I create this plot?”
▶ ”Why did I decide to omit those six samples?”
▶ ”Where (on the web) did I find these data?”
▶ ”What was that interesting gene?”

19

I’ve said all of these things to myself.



Basic principles

Step 1: slow down and document.
Step 2: have sympathy for your future self.
Step 3: have a system.

20

I can’t emphasize these things enough.

If you’re not thinking about keeping track of things, you won’t keep
track of things.

One thing I like to do: write a set of comments describing my basic
plan, and then fill in the code afterwards. It forces you to think things
through, and then you’ll have at least a rough sense of what you were
doing, even if you don’t take the time to write further comments.



Capturing EDA

▶ copy-and-paste from an R file
▶ grab code from the .Rhistory file
▶ Write an informal R Markdown file
▶ Write code for use with the KnitR function spin()

Comments like #' This will become text
Chunk options like so: #+ chunk_label, echo=FALSE

21

There are a number of techniques you can use to capture the EDA
process.

You don’t need to save all of the figures, but you do need to save the
code and write down your motivation, observations, and conclusions.

I usually start out with a plain R file and then move to more formal R
Markdown or AsciiDoc reports.



A file to spin()

#' This is a simple example of an R file for use with spin().

#' We'll start by setting the seed for the RNG.
set.seed(53079239)

#' We'll first simulate some data with x ~ N(mu=10, sig=5) and
#' y = 2x + e, where e ~ N(mu=0, sig=2)
x <- rnorm(100, 10, 5)
y <- 2*x + rnorm(100, 0, 2)

#' Here's a scatterplot of the data.
plot(x, y, pch=21, bg="slateblue", las=1)

22

Here’s an example R file for use with spin().



I almost forgot

Backups

Next two weeks: Clear code and R packages

23

You must back up your stuff.

You can generally rely on your department server, and you should
also make use of GitHub. But if you have other stuff on a laptop or at
home, you want to be sure to back that up to. Hard drives are cheap.

On a Mac, I use the built-in Time Machine, but I also use
SuperDuper! to create a bootable clone.

Also important in all of this is writing clear, modular code. With R,
it’s best to pull out reuseable code as an R package. We’ll talk about
these two topics over the next two weeks.


