
Version control
with git and GitHub

Karl Broman

Biostatistics & Medical Informatics, UW–Madison

kbroman.org
github.com/kbroman

@kwbroman
Course web: kbroman.org/Tools4RR

Slides prepared with Sam Younkin

Version control is not strictly necessary for reproducible research, and
it’s admittedly a lot of work (to learn and to use) in the short term,
but the long term benefits are enormous.

The advantages are: you’ll save the entire history of changes to a
project, you can go back to any point in time (and see what has
changed between any two points in time), you don’t have to worry
about breaking things that work, and you can easily merge changes
from multiple people.

I now use version control for basically everything: software, data
analysis projects, papers, talks, and web sites.

People are more resistant to version control than to any other tool,
because of the short-term effort and the lack of recognition of the
long-term benefits.

http://www.phdcomics.com/comics/archive.php?comicid=1531

2

This is typical. And never use “final” in a file name.

Methods for tracking versions

▶ Don’t keep track
– good luck!

▶ Save numbered zip files
– Unzip versions and diff

▶ Formal version control
– Easy to study changes back in time
– Easy to jump back and test

3

There are three methods for keeping track of changes: don’t keep
track, periodically zip/tar a directory with a version number, or use
formal version control.

Imagine that some aspect of your code has stopped working at some
point. You know it was working in the past, but it’s not working now.
How easy is it to figure out where the problem was introduced?

Why use formal version control?

▶ History of changes
▶ Able to go back
▶ No worries about breaking things that work
▶ Merging changes from multiple people

4

With formal version control, you’ll save the entire history of changes
to the project, and you can easily go back to any point in the history
of the project, to see how things were behaving at that point.

You’ll be able to make modifications (e.g., to try out a new feature)
without worrying about breaking things that work.

And version control is especially useful for collaboration. If a
collaborator has made a bunch of changes, it’ll be much easier to see
what was changed and to incorporate those changes.

Example repository

5

This is a snapshot of a repository on GitHub: a set of files and
subdirectories with more files. You can easily explore the contents.

Example history

6

This is a short view of the history of changes to the repository: a
series of “commits.”

Example commit

7

This is an example of one of those commits, highlighting what lines
were added and what lines were removed.

What is git?

▶ Formal version control system
▶ Developed by Linus Torvalds (developer of Linux)

– used to manage the source code for Linux

▶ Tracks any content (but mostly plain text files)
– source code
– data analysis projects
– manuscripts
– websites
– presentations

8

We’re going to focus on git, the version control system developed by
Linus Torvalds for managing the source code for Linux.

You can track any content, but it’s mostly for tracking plain text files,
but that can be most anything (source code, data analysis projects,
manuscripts, websites, presentations).

Why use git?

▶ It’s fast
▶ You don’t need access to a server
▶ Amazingly good at merging simultaneous changes
▶ Everyone’s using it

9

Git is fast, you can use it locally on your own computer, it’s amazingly
good at merging changes, and there are lots of people using it.

What is GitHub?

▶ A home for git repositories
▶ Interface for exploring git repositories
▶ Real open source

– immediate, easy access to the code

▶ Like facebook for programmers
▶ Free 2-year ”micro” account for students

– education.github.com

▶ (Bitbucket.org is an alternative)
– free private repositories

10

GitHub is a website that hosts git repositories, with a nice graphical
user interface for exploring git repositories.

Source code on GitHub is real open source: anyone can study it and
grab it.

GitHub is sort of like Facebook for programmers: you can see what
people are up to, and easily collaborate on shared projects.

It’s free to have public repositories on GitHub; if you want private
repositories, you generally have to pay, but I understand that
students can get a two-year account that allows 5 private repositories.

Bitbucket.org is an alternative; it allows unlimited private
repositories. I’m cheap, so I use Bitbucket for my private repositories.

Why use GitHub?

▶ It takes care of the server aspects of git
▶ Graphical user interface for git

– Exploring code and its history
– Tracking issues

▶ Facilitates:
– Learning from others
– Seeing what people are up to
– Contributing to others’ code

▶ Lowers the barrier to collaboration
– ”There’s a typo in your documentation.” vs.

”Here’s a correction for your documentation.”

11

GitHub takes care of the server aspects of git, and you get a great
GUI for exploring your repositories.

GitHub is great for browsing others’ code, for learning; you don’t even
have to download it to your computer. And it’s really easy to
contribute to others’ code (e.g., to report typos in their
documentation).

Basic use
▶ Change some files
▶ See what you’ve changed

git status
git diff
git log

▶ Indicate what changes to save
git add

▶ Commit to those changes
git commit

▶ Push the changes to GitHub
git push

▶ Pull changes from your collaborator
git pull
git fetch
git merge

12

These are the basic git commands you’ll use day-to-day.

git status to see the current state of things, git diff to see what’s
changed, and git log to look at the history.

After you’ve made some changes, you’ll use git add to indicate which
changes you want to commit to, and git commit to commit to them
(to add them to the repository).

You use git push to push changes to GitHub, and git pull (or git
fetch and git merge) to pull changes from a collaborator’s
repository, or if you’re synchronizing a repository between two
computers.

Initialize repository

▶ Create (and cd to) a working directory
– For example, ~/Docs/Talks/Graphs

▶ Initialize it to be a git repository
– git init
– Creates subdirectory ~/Docs/Talks/Graphs/.git

$ mkdir ~/Docs/Talks/Graphs
$ cd ~/Docs/Talks/Graphs
$ git init
Initialized empty Git repository in ~/Docs/Talks/Graphs/.git/

13

If you’re starting a new, fresh project, you make a directory for it and
go into that directory, and then you type git init. This creates a
.git subdirectory.

Produce content

▶ Create a README.md file

Talk on “How to display data badly”

These are slides for a talk that I give as often as possible,
because it's fun.

This was inspired by Howard Wainer's article, whose title I
stole: H Wainer (1984) How to display data badly.
American Statistician 38:137-147

A recent PDF is
[here](
http://www.biostat.wisc.edu/~kbroman/talks/graphs2013.pdf).

14

Start creating a bit of content, such as a Readme file. You can use
Markdown to make it look nicer.

Incorporate into repository

▶ Stage the changes using git add

$ git add README.md

15

Use git add to tell git that you want to start keeping track of this
file. This is called “staging,” or you say the file is “staged.”

Incorporate into repository

▶ Now commit using git commit

$ git commit -m "Initial commit of README.md file"
[master (root-commit) 32c9d01] Initial commit of README.md file
1 file changed, 14 insertions(+)
create mode 100644 README.md

▶ The -m argument allows one to enter a message
▶ Without -m, git will spawn a text editor
▶ Use a meaningful message
▶ Message can have multiple lines, but make 1st line

an overview

16

Use git commit to add the file to the repository.

A few points on commits

▶ Use frequent, small commits
▶ Don’t get out of sync with your collaborators
▶ Commit the sources, not the derived files

(R code not images)

▶ Use a .gitignore file to indicate files to be ignored
*~
manuscript.pdf
Figs/*.pdf
.RData
.RHistory
*.Rout
*.aux
*.log
*.out

17

I recommend using frequent, small commits. I’ll make a batch of
changes with a common theme, make sure things are working, then
add and commit.

In projects with collabotors, be sure to pull any changes from them
before starting to make your own changes, and encourage your
collaborators to do the same. If you both make a month’s changes in
parallel, merging the changes will be harder.

I commit only the source, and not files that are derived from those
sources. For a manuscript, though, I might include the pdf at major
milestones (at submission, after revision, and upon acceptance), so
that I don’t have to work as hard to reconstruct them.

Use a .gitignore file so that untracked files don’t show up with git
status. You can have a global ignore file, ~/.gitignore_global.

But leaving off critical files is a common mistake.

Using git on an existing project

▶ git init

▶ Set up .gitignore file
▶ git status (did you miss any?)

▶ git add . (or name files individually)

▶ git status (did you miss any?)

▶ git commit

18

I recommend using git with all of your current projects. Start with
one.

Go into the directory and type git init. Then use git add
repeatedly, to indicate which files you want to add to the repository.

Then use git commit to make an initial commit.

Removing/moving files

For files that are being tracked by git:

Use git rm instead of just rm
Use git mv instead of just mv

$ git rm myfile
$ git mv myfile newname
$ git mv myfile SubDir/
$ git commit

19

For files that are being tracked by git: If you want to change the
name of a file, or if you want to move it to a subdirectory, you can’t
just use mv, you need to use git mv.

If you want to remove a file from the project, don’t use just rm, use
git rm. Note that the file won’t be completely removed; it’ll still be
within the history.

First use of git

$ git config --global user.name "Jane Doe"
$ git config --global user.email "janedoe@wisc.edu"

$ git config --global color.ui true

$ git config --global core.editor emacs

$ git config --global core.excludesfile ~/.gitignore_global

20

The very first time you use git, you need to do a bit of configuration.

All of this stuff gets added to a ~/.gitconfig file

Set up GitHub repository

▶ Get a GitHub account
▶ Click the ”Create a new repo” button
▶ Give it a name and description
▶ Click the ”Create repository” button
▶ Back at the command line:

git remote add origin https://github.com/username/repo
git push -u origin master

21

To create a GitHub repository, I generally first set things up locally
(using git init and then a bit of git add and git commit).

Then go to GitHub and click the “Create a new repo” button. Give it
a name and description and click “Create repository.”

The back at the command line, you use git remote add to indicate
the github address; then git push to push everything to GitHub.

Configuration file

Part of a .git/config file:
[remote "origin"]

url = https://github.com/kbroman/qtl.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]
remote = origin
merge = refs/heads/master

[remote "brian"]
url = git://github.com/byandell/qtl.git
fetch = +refs/heads/*:refs/remotes/brian/*

22

The git remote add commands adds stuff to the .git/config file; if
you’ve made a mistake, you can just edit this file.

There are three different constructions for the url:
https://github.com/username/repo
git://github.com/username/repo
git@github.com:username/repo

With https, you’ll need to enter your GitHub login and password
each time. With git://, you’ll have only read access. With
git@github.com:, you need to set up ssh. (More work initially, but
you’ll get write access without having to enter your login and
password.)

Branching and merging

▶ Use branches to test out new features without
breaking the working code.

git branch devel
git branch
git checkout devel

▶ When you’re happy with the work, merge it back into
your master branch.

git checkout master
git merge devel

23

Branching is a really important feature of git. Create a branch to test
out some new features without breaking your working software.

git branch is used to create branches and to see what branches you
have.

git checkout is used to switch among branches.

git merge is used to merge a different branch into your current one.

Issues and pull requests

▶ Problem with or suggestion for someone’s code?
– Point it out as an Issue

▶ Even better: Provide a fix
– Fork
– Clone
– Modify
– Commit
– Push
– Submit a Pull Request

24

One of the best features of GitHub is the ease with which you can
suggest changes to others’ code, either via an Issue, or best of all via a
Pull Request.

Suggest a change to a repo

▶ Go to the repository:
http://github.com/someone/repo

▶ Fork the repository
Click the ”Fork” button

▶ Clone your version of it
git clone https://github.com/username/repo

▶ Change things locally, git add, git commit
▶ Push your changes to your GitHub repository

git push

▶ Go to your GitHub repository
▶ Click ”Pull Requests” and ”New pull request”

25

To suggest a change to someone’s repository, go to their repository
and click the “Fork” button. This makes a copy of the repo in your
part of GitHub.

Then go back to the command line and clone your version of the
repository.

Make changes, test them, add, and commit them, and push them to
your GitHub repository.

Then go back to your GitHub repository and click “Pull Requests”
and “New pull request.”

Pulling a friend’s changes

▶ Add a connection
git remote add friend git://github.com/friend/repo

▶ If you trust them, just pull the changes
git pull friend master

▶ Alternatively, fetch the changes, test them, and then
merge them.

git fetch friend master
git branch -a
git checkout remotes/friend/master
git checkout -b friend
git checkout master
git merge friend

▶ Push them back to your GitHub repo
git push

26

If a friend (or perhaps someone you don’t even know) has made
suggested changes to your repository by a Pull Request, you’ll get an
email and it will show up on your GitHub repository.

On the command line, use git remote add to make a connection to
their repository.

Then use git pull, or (better) use git fetch, test them out, and
then use git merge.

Finally, push the changes back to your GitHub repository.

Merge conflicts

Sometimes after git pull friend master
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

Inside the file you’ll see:
<<<<<<< HEAD
A line in my file.
=======
A line in my friend's file
>>>>>>> 031389f2cd2acde08e32f0beb084b2f7c3257fff

Edit, add, commit, push, submit pull request.

27

Sometimes there will be conflicts: you and your collaborator will have
been making changes to the same portion of a file and you’ll have to
resolve the differences.

It’s perhaps surprising how seldom this happens. git is really good at
merging changes.

If there’s a merge conflict, there’ll be a big warning message on git
pull or git merge, When you open the offending file in an editor,
look for lines with <<<<<<<, =======, and >>>>>>>. Pick and choose
and make the file just as you want it.

Then, git add, git commit, and git push.

git/GitHub with RStudio

See GitPrimer.pdf or RStudio page

28

RStudio has great features for using git and GitHub.

I’m not going to spend time talking about this here; google
git site:rstudio.com.

The key thing is that a Project in RStudio is a directory (with some
RStudio configuration file, blah.Proj) and will be your git repository.

Delete GitHub repo

29

To learn git and GitHub, you’ll want to create some test repositories
and play around with them for a while. You may want to delete them
later.

On your computer, if you delete the .git subdirectory, it’ll no longer
be a git repository.

On GitHub, go to the settings for the repository and head down to
the Danger Zone.

Git at Statistics, UW-Madison

▶ Easy to use, free infinite private repositories.
▶ Not as nice of interface to review code: Rely on GUI

or private web page.
▶ When your ssh account expires, your access to them

expires.

30

If you have an account on the UW-Madison Statistics server, you can
use git there in place of GitHub.

The advantage is that you can have as many private repositories as
you want.

The disadvantages are that you won’t have the GitHub interface and
you can only use this as long as you have a Statistics account.

I haven’t done this myself; these three slides were kindly provided by
Tim Grilley.

Git at Statistics, UW-Madison

Setup (on server):

▶ Connect to server
ssh bigmem01.stat.wisc.edu
Consider using kinit + aklog if logging on frequently

▶ Make Folder
cd Repositories
mkdir NewRepository

▶ Initialize Server Repository
cd NewRepository
git init

31

To set up a repository you just log in to one of the Statistics
computers, create a directory, and use git init.

Git at Statistics, UW-Madison

Usage (on client, e.g. laptop):

▶ Clone/Pull onto other systems
git clone ssh:\\bigmem01.stat.wisc.edu\~[user]\Repositories\NewRepository

▶ Make changes, and commit
git add -i
git commit -m 'An informative message here.'

▶ Push changes back
git push origin

32

This is what you’d do on your local computer (e.g., a Windows
laptop).

On a Mac, you’d need to replace the backslashes with forward slashes.

Open source means everyone can see my stupid
mistakes.

Version control means everyone can see every stupid
mistake I’ve ever made.

bit.ly/stupidcode
33

If you store your code on GitHub, everyone can see everything. They
can even see everything that ever was.

I think this openness is a Good Thing. You may be shy about your
code, but probably no one is looking. And if they are looking, that is
actually a Good Thing.

